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A One-Factor Motdel of Interest Rates
and Its Application to Treasury Bond
Options

In one simple and versatile model of interest rates, all security prices and rates depend on
only one factor—the short rate. The current structure of long rates and their estimated
volatilities are used to construct a tree of possible future short rates. This tree can then be
used to value interest-rate-sensitive securities.

For example, a two-year, zero-coupon bond has a known price at the end of the second
year, no matter what short rate prevails. Its possible prices after one year can be obtained by
discounting the expected two-year price by the possible short rates one year out. An iterative
process is used to find the rates that will be consistent with the current market term
structure. The price today is then determined by discounting the one-year price (in a
binomial tree, the average of the two possible one-year prices) by the current short rate.

Given a market term structure and resulting tree of short rates, the model can be used to
value a bond option. First the future prices of a Treasury bond at various points in time are
found. These prices are used to determine the option’s value at expiration. Given the values
of a call or put at expiration, their possible values before expiration can be found by the same
discounting procedure used to value the bond. The model can also be used to determine
option hedge ratios.

interest rates that can be used to value
any interest-rate-sensitive security. In ex-
plaining how it works, we concentrate on valu-
ing options on Treasury bonds.
The model has three key features.

THIS ARTICLE DESCRIBES a model of

1. Its fundamental variable is the short rate—
the annualized one-period interest rate.
The short rate is the one factor of the
model; its changes drive all security prices.

2. The model takes as inputs an array of long
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rates (yields on zero-coupon Treasury
bonds) for various maturities and an array
of yield volatilities for the same bonds. We
call the first array the yield curve and the
second the volatility curve. Together these
curves form the ferm structure.

3. The model varies an array of means and an
array of volatilities for the future short rate
to match the inputs. As the future volatility
changes, the future mean reversion
changes.

We examine how the model works in an imag-
inary world in which changes in all bond yields
are perfectly correlated; expected returns on all
securities over one period are equal; short rates
at any time are lognormally distributed; and
there are no taxes or trading costs.
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Figure A A One-Step Tree
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Valuing Securities

Suppose we own an interest-rate-sensitive se-
curity worth S today. We assume that its price
can move up to S, or down to Sy with equal
probability over the next time period. Figure A
shows the possible changes in S for a one-year
time step, starting from a state where the short
rate is r.

The expected price of S one year from now is
172 (S, + Sg). The expected return is 1/2 (S, +
Sq)/S. Because we assume that all expected
returns are equal, and because we can lend
money at r, we deduce:

1 1
ES“+ESd
S=———, 1
1+r M)

where r is today’s short rate.

Getting Today’s Prices from Future

Prices

We can use the one-step tree to relate today’s
price to the prices one step away. Similarly, we
can derive prices one step in the future from
prices two steps in the future. In this way, we
can relate today’s prices to prices two steps
away.

Figure B shows two-step trees for rates and
prices. The short rate starts out at 10 per cent.
We expect it to rise to 11 per cent or drop to 9
per cent with equal probability.

The second tree shows prices for a two-year,
zero-coupon Treasury. In two years, the zero’s
price will be $100. Its price one year from now
may be $91.74 ($100 discounted by 9 per cent) or
$90.09 ($100 discounted by 11 per cent). The
expected price one year from now is the average
of $90.09 and $91.74, or $90.92. Qur valuation
formula, Equation (1), finds today’s price by

discounting this average by 10 per cent to give
$82.65.

We can in this way value a zero of any
maturity, provided our tree of future short rates
goes out far enough. We simply start with the
security’s face value at maturity and find the
price at each earlier node by discounting future
prices using the valuation formula and the short
rate at that node. Eventually we work back to
the root of the tree and find the price today.

Finding Short Rates from the Term
Structure

The term structure of interest rates is quoted in
yields, rather than prices. Today’s annual yield,
y, of the N-year zero in terms of its price, S, is
given by the y that satisfies:

G 100 )
—(1+y)N' )

Similarly, the yields y, and y4 one year from
now corresponding to prices S, and S, are given
by:
3 100

1+ Yu, d)N_l .

We want to find the short rates that assure
that the model’s term structure matches today’s

Su, d (3)

Figure B Two-Step Trees of Short Rates and
Prices
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Table I A Sample Term Structure

Maturity Yield Yield Volatility
(years) (%) (%)
1 10 20
2 11 19
3 12 18
4 12.5 17
5 13 16
Figure C Finding the Initial Short Rate Using a
One-Year Zero
100
90.91 10
100
Price Tree Rate Tree

market term structure. Table I gives the as-
sumed market term structure.

The price of a zero today is the expected price
one period in the future discounted to today
using the short rate. The short rate, r, is 10 per
cent. Using the price tree of Figure C, we see
that S, = S4 = 100, and S = 90.91:

1 1
100+5100 oo

90.91 = = .
1+r

1+r

Short Rates One Period in the Future
We can now find the short rates one year from

Look at the two-year short-rate tree in Figure
D. Let’s call the unknown future short rates r,
and ry. We want their values to be such that the
price and volatility of the two-year zero match
the price and volatility in Table I.

We know today’s short rate is 10 per cent.
Suppose we guess thatr, = 14.32 and rq = 9.79.

Now look at the price and yield trees in Figure
D. A two-year zero has a price of $100 at all
nodes at the end of the second period, no matter
what short rate prevails. Using the valuation
formula—Equation (1)—we can find the one-
year prices by discounting the expected two-
year price by r, and ry; we get prices of $87.47
and $91.08. Using Equation (3), we find that
yields of 14.32 and 9.79 per cent correspond to
these prices. These are shown on the yield tree
in Figure D.

Now that we have the two-year prices and
yields one year out, we can use the valuation
formula to get today’s price and yield for the
two-year zero. Today’s price is given by Equa-
tion (1) by discounting the expected one-
year-out price by today’s short rate:

2(87.47) + 3(91.08)

= 81.16.
1.1

We can get today’s yield for the two-year zero,
y», by using Equation (2) with today’s price as S.
As the yield tree in Figure D shows, y, is 11 per
cent.

The volatility of this two-year yield is defined
as the natural logarithm of the ratio of the
one-year yields:

now by looking at the yield and volatility for a 1 l;.%i
two-year zero using the term structure of Table -

I gy = 5 =19%.
Figure D Finding the One-Year Short Rates Using a Two-Year Zero
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Figure E Finding the Two-Year Short Rates
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With the one-year short rates we have chosen,
the two-year zero’s yield and yield volatility
match those in the term structure of Table I.
This means that our guesses for r, and ry were
right. Had they been wrong, we would have
found the correct ones by trial and error.

So an initial short rate of 10 per cent followed
by equally probable one-year short rates of 14.32
and 9.79 per cent guarantee that our model
matches the first two years of the term struc-
ture.

More Distant Short Rates

We found today’s single short rate by match-
ing the one-year yield. We found the two one-
year short rates by matching the two-year yield
and volatility. Now we find the short rates two
years out.

Figure E shows the short rates out to two
years. We already know the short out to one
year. The three unknown short rates at the end
of the second year are r,,, 1,4 and ry,.

The values for these three short rates should
let our model match the yield and yield volatility
of a three-year zero. We must therefore match
two quantities by guessing at three short rates.
This contrasts with finding the one-year short
rates, where we had to match two quantities
with two short rates. As a rule, matching two
quantities with two short rates is unique; there
is only one set of values for the short rates that
produces the right match. Matching two quan-
tities with three short rates is not unique; many
sets of three short rates produce the correct
yield and volatility.

Remember, however, that our model assumes
that the short rate is lognormal with a volatility
(of the log of the short rate) that depends only
on time. One year in the future, when the short
rate is 14.32 per cent, the volatility is 1/2 In(r,/

I',qa); when the short rate is 9.79 per cent, the
volatility is 1/2 In(r,4/r4q). Because these volatil-
ities must be the same, we know that r /r 4 =
1'ud/rdd/ or 1‘Zud = I'yulad-

So we don’t really make three independent
guesses for the rates; the middle one, r 4, can be
found from the other two. This means we have
to match only two short rates—r,, and ry—
with two quantities—the three-year yield and
volatility in the model. This typically has a
unique solution.

In this case, Figure E shows that values for
Tuur Taq and g of 19.42, 9.76 and 13.77 per cent,
respectively, produce a three-year yield of 12
per cent and volatility of 18 per cent, as Table I
calls for.

We now know the short rates for one and two
years in the future. Using a similar process, we
can find the short rates on tree nodes farther in
the future. Figure F displays the full tree of short
rates at one-year intervals that matches the term
structure of Table I.

Valuing Options on Treasury Bonds
Given the term structure of Table I and the
resulting tree of short rates shown in Figure F,
we can use the model to value a bond option.

Coupon Bonds as Collections of Zeroes

Before we can value Treasury bond options,
we need to find the future prices of a Treasury
bond at various nodes on the tree. Consider a
Treasury with a 10 per cent coupon, a face value
of $100 and three years left to maturity. For
convenience, consider this 10 per cent Treasury
as a portfolio of three zero-coupon bonds—a
one-year zero with a $10 face value; a two-year
zero with a $10 face value; and a three-year zero
with a $110 face value.

This portfolio has exactly the same annual

Figure F Short Rates that Match the Term
Structure of Table |
Today Year1 Year2 Year 3 Year 4
2553
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Figure G

Three-Year Treasury Values Obtained by Valuing an Equivalent Portfolio of Zeroes
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payoffs as the 10 per cent Treasury with three
years to maturity. So the portfolio and the
Treasury should have the same value. The tree
in Figure F was built to value all zeroes accord-
ing to today’s yield curve, hence we can use it to
value the three zeroes in the portfolio above.

Panel (e) of Figure G shows the price of the 10
per cent Treasury as the sum of the present
values of the zeroes—$95.51. The tree in panel
(f) gives the three-year Treasury prices obtained
after subtracting $10 of accrued interest on each
coupon date.

Puts and Calls on Treasuries

We found a price of $95.51 for a three-year, 10
per cent Treasury. The security is below par
today; it has a 10 per cent coupon, and yields in
today’s yield curve are generally higher than 10
per cent.

We want to value options on this security—a
two-year European call and a two-year Euro-
pean put, both struck at $95. From Figure G(e)
we see that in two years the three-year Treasury

Figure H

Two-Year Options on a Three-Year
Treasury
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bond may have one of three prices—$110.22,
$106.69 or $102.11. The corresponding prices
without accrued interest are $100.22, $96.69 and
$92.11.

At expiration, the $95 call is in the money if
the bond is worth either $100.22 or $96.69. The
call’s value will be the difference between the
bond’s price and the strike price. The $95 call
will be worth $5.22 if the bond is trading at
$100.22 at expiration and $1.69 if the bond is
trading at $96.69. The call is out of the money,
and therefore worth zero, if the bond is trading
at $92.11 at expiration. Figure H shows the
short-rate tree over two years, as well as possi-
ble call values at expiration of the option in two
years.

At expiration the put is in the money if the
bond is worth $92.11 (without accrued interest).
The put’s value will be the difference between
$92.11 and the $95 strike price—$2.89. The put
is worthless if the bond’s price is one of the two
higher values, $100.22 or $96.69. Figure H gives
the put values.

Knowing the call values at expiration we can
find the possible values of the call one year
before expiration, using the valuation formula
given by Equation (1). If the short rate is 14.32
per cent one year from today, the call’s value
one year before expiration will be:

5(0.00) + 3(1.69)
1143 07*
If the short rate is 9.79 per cent one year from
today, the call’s value will be:

1.69) + 1(5.22)
togs o
Given the call values one year out, we can
find the value of the call today when the short
rate is 10 per cent:

70.74) + 33.15)

11 =1.77

Put values are derived in a similar manner.
Figure H shows the full trees of call and put
values.

We have priced European-style options by
finding their values at any node as the dis-
counted expected value one step in the future.
American-style options can be valued with little
extra effort. Because an American option may be

Figure I Hedge Ratios for a Call and a Put on a
Treasury
Tu
T
G
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exercised at any time, its value at any node is
the greater of its value if held or its value if
exercised. We obtain its value if held by using
the valuation formula to get any node’s value in
terms of values one step in the future. Its value
if exercised is the difference between the bond
price at the node and the strike price.

Option Hedge Ratios

When interest rates change, so do the prices
of bonds and bond options. Bond option inves-
tors are naturally interested in how much option
prices change in response to changes in the
price of the underlying bond. We measure this
relation by the hedge ratio (or delta).

Figure I shows one-step trees for a Treasury,
a call and a put. For a call worth C on a Treasury
with price T, the hedge ratio is:

Cu—Cy
Tu_Td ’

Acall = (4)
where C, and C, are the values of the call one
period from today in the tree corresponding to
possible short rates r, and r4. A similar formula
holds for a put, P, on a Treasury; we simply
replace C with P in Equation (4).

For the two-year put and call on the three-
year Treasury considered above, we start by
finding the differences between possible prices
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one year from today. Given the Treasury prices
shown in Figure G and the option prices from
Figure H:

Tu_Td

[

91.33 — 98.79

= —7.46
Cy,—C4=0.74 - 3.15

= — 241
P,—P34=1.26

= 1.26.

We can now derive the hedge ratios, using

Equation (4):
—2.41
—7.46

(5)

call =

=0.32

N ;
P —7.46 ©

= —0.17.

These hedge ratios give us the sensitivity of
the option to changes in the underlying Trea-
sury price by describing the change in the
option’s price per dollar change in the Trea-
sury’s price. They therefore tell us how to hedge
the Treasury with the option, and vice versa.
The call hedge ratio is positive because the call
prices increase when the Treasury price in-
creases. In contrast, the put hedge ratio is
negative because put prices decrease as the
Treasury price increases.

Reducing the Interval Size

In the examples above, the short-rate tree had
coarse one-year steps, Treasuries paid annual
coupons and options could only be exercised
once a year.

To get accurate solutions for option values,
we need a tree with finely spaced steps between
today and the option’s expiration. Ideally, we
would like a tree with one-day steps and a
30-year horizon, so that coupon payments and
option exercise dates would always fall exactly
on a node. We would also like to have many
steps to expiration, even for options on the
verge of expiring.

In practice, our computer doesn’t have

enough memory to build a 30-year tree with
daily steps. And even if it did, it would take us
hours to value a security. Instead, we can build
a sequence of short-rate trees, each with the
same number of steps but compressed into
shorter and shorter horizons. Thus each tree has
finer spacing than the one before it. For exam-
ple, we might use today’s term structure to
build short-rate trees that extend over 30 years,
15 years, 7-1/2 years and so on. In this way, no
matter when the option expires, we will always
have one tree with enough steps to value the
option accurately.

To value an option on any Treasury, we use
two trees—a coarse one with enough steps to
value the Treasury accurately from its maturity
back to today, and a fine one with enough steps
to value the option accurately from its expiration
until today. We find the Treasury values on the
coarse tree by using the model’s valuation for-
mula from maturity to today. Then we interpo-
late these Treasury values onto the fine tree,
which may often have as many as 60 periods.
Maturity, expiration and coupon dates that fall
between nodes are carefully interpolated to the
nearest node in time. In this way, the option can
be accurately valued.

Interpolating across trees gives us accurate,
yet rapid, results. Once model values have been
found to match the term structure, we can value
options in a few seconds.

Improving the Model
We considered more complex models that use
more than one factor to describe shifts in the
yield curve. Increasing the number of factors
improves the model results. But a multifactor
model is much harder to think about and work
with than a single-factor model. It also takes
much more computer time. We therefore think
it pays to work with different single-factor mod-
els before moving on to a multifactor model.
Along these lines, we examined the effects on
our model of letting forward mean reversion and
forward short-rate volatility vary independently.
(They are tied together in the current model only
by the geometry of a tree with equal time spacing
throughout.) We found that varying forward
mean reversion and varying forward short-rate
volatility give very different results. We can use
one or the other alone, or a mixture of both, in
matching the term structure. ll
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