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1. Introduction

A growing literature has brought to our attention the importance of information

transmission and aggregation for economic and political behavior.  If agents are

informationally decentralized and act on the basis of what is going on around them, their

local interactions may lead to very rich macro dynamics.  How likely is it that an

economy with learning agents would converge on common beliefs?  And how closely

would those beliefs match the underlying beliefs of the agents themselves?  In systems of

decentralized, locally connected agents, how may information be inferred from the

actions of others?  And, how important is the aggregation of information about group

behavior in guiding individual choices?

Many recent studies of cascades point to the possibility of information cascades in

economies with local learning and information transmission.  Early models were known

by different terms---bandwagons, herding, and path-dependent choice.  In each of these

cases, the choices of agents who act first inform and influence the choices of later agents.

In turn, these choices influence later agents and a time sequence of choice results.  In this

sort of sequential decision process, if agents draw strong inferences from the choices of

others, they may make choices that are ex post non-optimal under full information.  A

necessary ingredient in generating such a process is some form of bounded rationality;



2

agents cannot possess full information and foresight or they would have no need to draw

inferences from the actions of other agents.

Information cascades are defined as conformity that ignores one’s own tastes. As

Bickhchandani, Hirshleifter and Welch  (1992) define it, an information cascade is a

sequence of decisions where it is optimal for agents to ignore their own preferences and

imitate the choice of the agent or agents ahead of them.  Models of cascades answer two

key questions: Can they occur and are they fragile?  In this paper, we examine both of

these questions and add a third: What sorts of distributions of choices do information

cascades produce?  This is a natural question to ask because the dynamics of cascades

must have certain statistical properties.  If the cascade “locks onto” a choice among

several, as the theory posits, then the resulting distribution of choices must be skewed and

highly uneven.  If information cascades are fragile, then they should exhibit “large”

fluctuations and they may have complex basins of attraction.  Both of these questions

come down to the same one: What are the properties of the statistical distributions to

which information cascades converge?

A weakness of the literature on information cascades is the lack of empirical

research.  Do the models make correct predictions?  Are they testable?  Are they capable

of explaining observed behavior?  At the present, the evidence is only anecdotal and

suggestive.  Much needs to be done before information cascades can be accepted as real

explanations for observed data.  The movies offer the opportunity to test information

cascade models.  A movie is released to theaters in its opening week.  Movie fans have

access to various sources of information---public and private.  They are able to see how

many people are choosing each movie by reading the newspaper, watching the evening
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news, or through trade publications and sources on the Internet.  Thus, they are able to

observe signals about the actions of other agents in the manner assumed in cascade

models.  In fact, one could argue that the studios’ casting, marketing, and release

strategies are an attempt to initiate a cascade.  Because movies play out their run over

time, one can observe the dynamics of box office attendance and revenues for evidence

of cascades and convergence in distribution.

A number of papers have characterized motion picture revenue dynamics (see

below) and have modeled the effect of the dynamics on the distribution of revenues.

These papers raise some doubts that information cascade models are capable of

explaining the data.  Cascade models give a reasonable account of the skewed

distribution of revenues that one finds in the movies, but they fail to account for certain

important features of the dynamics.  In addition, cascade models make rather strong

claims about the frequency of information cascades (they are virtually assured to happen)

and their optimality (they are as easily wrong as right).  We think that cascade models go

wrong in their failure to incorporate information about quality.  In the prevailing models,

agents observe only the actions of others and must infer the quality of products from

these actions. Hence, an agent can only imitate but not learn from the actions of others.

So, our first task is to extend the information available to agents beyond actions to

include the quality experienced by others.

The second place where cascade models go wrong in our opinion is the way they

structure agent interactions.  Agents make decisions sequentially as though they are

standing in a line and they observe the actions of all the other agents ahead of them in the

line.  Hence, the information structure is global and there is no local interaction of the
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sort that agent-based modeling regards as fundamental.  So, our second task is to put

some structure on the way information is transmitted among agents and to see how that

affects the dynamics and outcomes of cascades.

Our model extends the basic model of the information cascade in these ways:

First, the sources of information include local observation of actions and a summary

statistic about choices in the aggregate.  Second, there are many choices, not just two as

in most other models of information cascades.  Consequently, we are modeling a

competition among cascades.  Third, there is the possibility to choose none of the

alternatives.   This model contains the basic model, which can be recovered by varying

the parameters that weight the signal sources and number of alternative choices.  One

would expect these expanded information sources and choices to diminish the possibility

that a cascade will sweep one of the choices to dominance.

The purpose, then, of this paper is to investigate the properties of information

cascades and the statistical distribution of choices they generate within the context of the

motion picture industry.   This grounds the analysis in the evidence and lets us examine

the kinds of information dynamics that could account for “hits” and “bombs” in the

movies, a subject that is intriguing in its own right.  We use multi-agent models to

simulate the distribution of agents across movies.   The model incorporates both local and

global interactions.  Agents choose sequentially and interact with their immediate

predecessors, by observing their actions or receiving a message from them about a

movie's quality.  In addition, agents have access to global information about the market

shares of movies in a way that closely mimics the reports on the evening news.   There
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has been concern that reporting the grosses of the top movies has encouraged herding and

made movies worse and our model can shed some light on this issue.

The outline for the rest of the paper is as follows.  Section 2 surveys the related

literature briefly.  In section 3, a version of Bikhchandani, Hirshleifer and Welch's (1992)

action-based model is simulated.  This model is extended to a quality- and quantity-based

model in section 4.  The dynamics of competition among good and bad movies and the

influence of the opening week are examined in section 5.  Section 6 concludes.

2.  Literature

A seminal paper by Bikhchandani et al (1992) explains the conformity and

fragility of mass behavior in terms of informational cascades.  In a closely related paper

Banerjee (1992) models optimizing agents who engage in herd behavior which results in

an inefficient equilibrium. Anderson and Holt (1997) are able to induce information

cascades in a laboratory setting by implementing a version of Bikhchandani et al's (1992)

model.

The second strand of literature examines the relationship between information

cascades and large fluctuations.  Lee (1998) shows how failures in information

aggregation in a security market under sequential trading result in market volatility.  Lee

advances the notion of “informational avalanches” which occurs when hidden

information (e.g. quality) is revealed during an informational cascade thus reversing the

direction of information cascades.

The third strand explores the link between information cascades and heavy tailed

distributions.  Cont and Bouchaud (1998) put forward a model with random groups of
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imitators that gives rise to stock price variations that are heavy-tailed distributed.  De

Vany and Walls (1996) use a Bose-Einstein allocation model to model the box office

revenue distribution in the motion picture industry.  The authors describe how supply

adapts dynamically to an evolving demand that is driven by an information cascade (via

word-of-mouth) and show that the distribution converges to a Pareto-Lévy distribution.

The ability of the Bose-Einstein allocation model to generate the Pareto size distribution

of rank and revenue has been proven by Hill (1974) and Chen (1978). De Vany and

Walls (1996) present empirical evidence that the size distribution of box office revenues

is Pareto.  Subsequent work by Walls (1997), De Vany and Walls (1999a), and Lee

(1999) has verified this finding for other markets, periods and larger data sets.   De Vany

and Walls (1999a) show that the tail weight parameter of the Pareto-Levy distribution

implies that the second moment may not be finite.  Lastly, De Vany and Walls (1999b)

have shown that motion picture information cascades begin as action-based, non-

informative cascades, but undergo a transition to an informative cascade after enough

people have seen it to exchange “word of mouth” information.  At the point of transition

from an uninformed to an informed cascade, there is loss of correlation and an onset of

turbulence, followed by a recovery of week to week correlation among high quality

movies.

3. The BHW Model of Action-Based Information Cascades

Bikhchandani, Hirshleifer and Welch (1992) model information cascades as

imitative decision processes.  In their model, Bayesian agents choose to adopt or reject an

action based on their own private information and information about the actions of all the
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other agents who chose before them.  The agents are essentially in a line, the order of

which is exogenously fixed and known to all, and they are able to observe the binary

actions (adopt or do not adopt) of all the agents ahead of them.  The agents infer the

signal of the other agents in the sequence from their actions: the agent reasons that if an

agent adopts, then they must have gotten a high signal.  If enough agents adopt, then the

agent may ignore her own signal because the weight of the evidence of previous

adoptions overcomes the weight the agent places on her own signal. Thus, according to

the model, a rational agent may ignore her own information and imitate the choices of

agents who choose before her.

Key results of their paper include:

1. As the precision of the private signal of the value of adoption increases, a correct

cascade (the agent adopts when the true value warrants adoption) starts with higher

probability and earlier.

2. If the signal is noisy enough the probability of an incorrect cascade can be as high as

0.5.

3. An agent with high precision choosing early can start a cascade, but the high-precision

agent can also shatter a cascade if he chooses later.

4. The probability that no cascade occurs is decreasing in the number of agents in the

sequence.

5. An increase in the number of agents increases the probability that a cascade starts.

6. A cascade once started will last forever.

7. The release of a small amount of public information can shatter a long-lasting cascade.
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8. As the number of public information releases increases, the correct choice becomes

clearer and individuals settle into the correct cascade.

We develop an agent-based version of the Bikchandani, Hirshleifer, and Welch

model (1992, henceforth BHW) of an information cascade.  We have several objectives

in what follows.  We examine the properties of simulated information cascades and

compare them to the theoretical predictions of the BHW model.  Since cascade models

are not analytically closed and their dynamics are stochastic and complex, it is not clear

what their time paths and attractors look like and how sensitive these are to different

parameterizations.   In their article, BHW give probabilities that cascades will occur but

the paper contains no explicit dynamics.  This is a gap we want to fill.

It appears that the reason the BHW model may be analyzed solely through its ex

ante probabilities is that the asymptotics of the model are so strong that the probabilities

reach their limits within 3 to 5 agents.  And this is true no matter how accurate the private

signals are.  Consequently, the information cascade settles to its attractor in a few moves.

This seems to us to be too strong a result and suggests that almost any string of choices

will become a cascade in which agents ignore their own information and preferences.

In Figure 1 we plot BHW’s ex ante probability that a cascade will not occur as a

function of the signal accuracy and the number of agents in the choice sequence.  As is

evident, the probability that there is no cascade is small for all values of the accuracy of

the prior probability and number of agents (N) and quickly goes to zero as the length of

the choice sequence grows.  Values of N as low as 3 and 5 are sufficient for a cascade to

be almost certain to occur.  Virtually all choice sequences longer than 3 or 4 become

cascades, no matter how accurate private signals are.  Consequently, the concept of a
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cascade becomes almost vacuous since virtually any sequence of more than 4 choices

will almost surely be a cascade. Because it converges so rapidly, the BHW model does

not determine how probabilities evolve endogenously with the actual choices made along

the choice sequence.  This is an issue we seek to address.

But, there is a deeper problem---the problem of identifying a cascade in a

sequence of choices. The BHW model predicts the probabilities that cascades will occur.

This means that the results apply to a large sample of choice sequences, not to any

particular sequence.  The model says that, in a large sample of choice sequences, the

frequency of (long) paths that are not cascades will be vanishingly small.  Any single

choice path may display segments of UP or DOWN cascades or NO cascade.  That means

one must observe a large number of sequences to see if the process generating them is an

information cascade in the BHW sense.  A single choice sequence is not sufficient to

identify an information cascade.

We explicitly incorporate local and global communication among agents.  Some

models of information cascades assume information is aggregated---in the BHW model,

the agents can see all the way down the line to observe all the choices made ahead of

them.  Others assume agents only see a few of the choices made before them---this is a

strictly local form of information. We explicitly model the local and aggregate

information available to agents to assess their relative contributions to cascades.  In

addition, we extend the model beyond the binary choice model to include choices among

many alternatives.

Can the extended model give an account of the known empirical features of the

box office revenue dynamics of motion pictures?  Because motion picture audiences
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choose sequentially and use both local (word of mouth) and global (box office reports)

information, it is a dynamical process that offers a nice test of cascade models and of the

nature of their dependence on information structure.   Can information cascades produce

the skewed, heavy-tailed distributions that are found in motion pictures?

3.1.  An Agent-Based Model of Information Cascades

In the BHW model agents choose sequentially between adopting or rejecting a single

product. Each individual privately observes a conditionally independent signal X about

the value of the product.  Individual i's signal Xi can be either High or Low. A signal

High is observed with probability p > 0.5 when the true value is High and a signal High is

observed with probability 1 – p when the true value is Low.  Each agent in the choice

sequence observes the choices of all the agents ahead of them and uses this information

to infer the signal of the preceding agent.  If a preceding agent chooses the product, the

next agent infers her signal was High; if the agent does not choose the product, she infers

the agent’s signal was Low.

In our model, agents choose between m products, which we will hereafter call

movies (though they could be software applications, clothing, stocks, or what have you).

They have access to two sources of information: they can observe the action of their

nearest neighbor and they can observe an aggregate signal.  In this case, the nearest

neighbor is the agent who chose just before them.  In addition, the agents have access to

the market shares of the products.  The market shares of the products summarize the

choices of the agents who went before.  As in BHW, the agent’s signal precision is a
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probability p > 0.5 that the signal High will be observed when the true value is High and

1 – p when the true value is Low.

Assume that agent i sees movie j (i.e. i’s signal Xi = High).  Agent i+1 will infer

agent i’s private signal Xij about movie j from i’s decision.  If the second agent gets a

High signal (Xi+1=High), the agent will see movie j.  Otherwise, Agent i+1 will flip a

coin to choose movie j or to see the movie with the highest market share.

If the previous agent chose no movie, the next agent will choose not to see a

movie if the agent's private signal is Low, or flip a coin to choose not to see a movie or to

see the movie with highest market share when the agent's signal is high. The choice logic

is diagrammed in Figure 2.

3.2. Signal Accuracy and Information Cascades

This model is simulated with 2,000 agents who are sequentially allocated among

20 movies.  Before the simulation begins, each movie is given one agent.  Then the first

agent is allocated randomly to one of the 20 movies and the choice logic sets in.  The

second agent observes the prior agent’s choice. We carry out twenty simulation runs for

each value of p from 0.5 to 0.9 with an increment of 0.05.  A correct choice is defined as

one in which a good quality movie is chosen.  In our simulation, half of the movies are

good movies and half are bad movies, though the agents are unable to communicate this

information and only observe the action of their immediate predecessor.  The mean

numbers of correct choices over each sequence are tabulated for p in Table 1.

In the BHW model the probability of a correct cascade is increasing in the

accuracy of the private signals.  The statistics of our simulation results in Table 1 cannot
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confirm this result.  A higher value of p is not necessarily associated with a higher mean

value of correct choices.  The problem seems to be that a high p gives too much

credibility to the choice of the agent ahead and, thus, may steer the agents following onto

an inferior movie.

The BHW model also implies that the probability of a cascade is almost surely

one (the probability of no cascade is vanishing for N > 5 for any value of p, see Figure 1).

The simulations indicate that, at low values of p, cascades seldom occur and when they

do they are extremely fragile.  As an example, consider Figures 3 (a) and 3 (b) which

depict movie choices over time for two extreme cases: p = 0.55 (low accuracy) and p =

0.95 (high accuracy).

In the figures, time evolves from left to right, each time step corresponding to a

decision.  The vertical axis corresponds to the 20 movies.  When a movie is selected that

is indicated by a dot at its vertical location.   In the high accuracy case, the choices move

along a path at movie 10.  But, there are sequences in which the same movie is chosen are

interrupted by jumps to other movies.  The intermittent jumps don’t persist and the agents

eventually return to a cascade on movie 10 because it has the highest market share.  It is

the global information that pulls the audience back to movie 10 after it jumps to other

movies.  The random element in choice, and local information about the agent just ahead

in the sequence, are capable of moving a cascade away from the leading movie

temporarily, but the global information (market shares) eventually pulls it back if the

shares are sufficiently uneven.  This highlights how important the global view posited in

standard models is to their results (recall each agent sees all the choices before she makes

hers).
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When signal accuracy is low, the choice sequences jump randomly among movies

and the figure is typical of nearly all the simulations.  There is no rapid convergence to a

cascade with the number of decisions, in contrast to the BHW model’s prediction.  In

fact, there are no cascades when signals are below a threshold of accuracy.  When signals

have high accuracy, information cascades do appear but they are fragile---they break and

then reappear---and the lengths of cascades correspond to “bursts” that appear to have a

power law distribution.

3.3. Information Cascades and the Distribution of Choices

In virtually all models of information cascades the agents choose among just two

alternatives.  When choice is binary, an uneven distribution will mean that one alternative

gains all, or nearly all, of the market.  When there are many possible choices, will

cascade-type choice processes also lock onto just one of the alternatives?  Or will the

cascades jump back and forth between products so much that the distribution will be

fairly even?

This is an important question in the movie business, where cascades are thought

to be an important influence on the distribution of box office revenues.  Indeed, studio

marketing is virtually built on the premise that cascades can be started with the right

campaign and stars.   What is the nature of the box office distribution?  A number of

studies show that the distribution of motion picture box office revenues is well fitted by a

Pareto-Lévy (stable) distribution with infinite variance.  These distributions are “heavy

tailed” and have more probability mass on extreme outcomes than a normal distribution

(which is the only member of the class of stable distributions with finite variance).  A
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standard approach when dealing with such distributions is to examine their upper tail,

typically the top 10 percent, where they are power laws and to estimate a measure of

weight in the upper tail. The value of the weight in the tail is related to the so-called tail

index α.

Following a conventional approach, we estimate the tail index by applying least

squares regression to the upper ten percent of the observations generated by the

simulations.  In this upper tail, a Lévy stable distribution is asymptotically a Pareto

distribution of the following form:

P[X > x] ~ x-α,   for x > k (1)

where x is the number of agents allocated to each movie and k is “large”.  A low value of

the tail index α corresponds to a slow decay of the tail and, hence, to what is called a

heavy tail.

In the following exercise we are interested in discovering what the distribution of

choices looks like.  We also want to see if information cascade models are capable of

generating outcomes similar to the empirical findings. We allocate 2,000 agents to 200

movies via our agent-based version of the BHW model. This large number of movies is

required to give the degrees of freedom required to estimate the value of α from only the

top 10 percent of movies.  For each value of p, we run twenty simulations. The statistics

of our simulations are in Table 2.

Our simulation results indicate that higher values of signal accuracy p are

associated with heavier-tailed distributions of agents over movies (i.e. lower α).  This
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result appears to be stronger for higher values of p - consistent with earlier simulation

results that show that informational cascades are less fragile for higher values of p.  The

α estimates have a lower standard deviation at high values of p, which further supports

this view.    Hence, there is a positive relationship between informational cascades and

heavy-tailed distributions, provided that signal accuracy p is sufficiently high.

A value of p of 0.7 gives a value of α of 1.5 that is virtually the same as the value

found in De Vany and Walls (1997, 1999a), Lee (1999), Walls (1997) and Sornette

(1999) for the movies.   This consensus regarding the value of α can be considered to be

fairly reliable as the aforementioned studies cover different samples, countries, and time

frames, yet they all find a value of α close to 1.5.

It is known that the variance is infinite when the value of α is less than 2 and that

the mean is infinite when α is less than 1.  As the results reported in the table indicate, at

a signal accuracy of 0.7 and higher, the second moment of the distribution is infinite and,

at accuracy 0.9, even the mean is infinite.  The model is capable of generating Lévy -

stable distributions with the right value of α.  The signal cannot be too noisy or the

distribution will be too flat and it cannot be too accurate or the distribution will be too

skewed.

The implications of finding that information cascades can produce heavy-tailed

distributions are a bit startling.  If the variance and even the mean may not be finite, the

implication is that it is not possible to predict where the cascade will go in situations

where it is capable of capturing the dynamics of choice in a real situation.  It indicates

that none of the conclusions derived from cascade models hold when there are several

choices and when a choice of none of the available alternatives is possible.  Only when
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signal accuracy is low is it possible to predict the mean with a finite variance and, in this

case, the distribution is essentially uniform.  These are pretty negative assessments of the

predictive content of information cascade models.

4. A Model of Action- and Quality-Based Information Cascades

In the BHW model, the agents are not informed as to the quality of their choice

alternatives.  They receive a private signal about quality but observe only the actions and

not the quality evaluations of the agents who precede them in the sequence.  From this

information they infer the quality of each of the alternatives.  A string of bad choices can

become such powerful signals that a cascade may begin in which the group makes the

inferior choice.  What is the feature that drives the cascade to incorrect choices?  Is it the

lack of quality information from other agents?  Is it the dependence of the choices on a

quantity signal rather than a quality signal that is crucial?  Or is it the fact that agents “see

too much” in the sense that they observe the actions of all the previous agents, making

aggregate information a too-compelling statistic?  How robust are the propositions about

information cascades in situations where agents can pass quality assessments to one

another?   What happens when the confidence that agents place in the assessments of

other agents is not exogenously set but evolves endogenously with the accumulation of

evidence?

We extend our agent-based model in several ways to investigate these questions.

We assume, as above, that an agent can observe the choice of a local agent (the agent just

in front of her in the line).  In addition, agents are able to convey an assessment of the

quality of their selection to a local agent.   This is a purely local form of message passing-
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--agents are able to convey their quality assessments only to their neighbors and only

concerning products they have chosen.  The confidence an agent attaches to another

agent's assessment is uniform among agents and exogenously fixed at π (this is made

endogenous in the extended version of the model below).

In addition to a local quality signal (word of mouth information), a form of

aggregate or partial global information is available about the choices of other agents---a

quantity signal.   We assume a report is announced in which the actions of the preceding

agents are partially revealed; this is a public signal of the sort that BHW argue can correct

a cascade.  In this report, the market shares of the top products are announced.  The

market shares are a quantity signal, not a quality signal, but one that may be taken to

represent quality.  Agents rely on this information when they do not have sufficient

information from local sources to make a choice.   This model captures the interaction of

word of mouth and other sources of quality information with box office reports of the

leading movies, all of which are quantity signals, that are available from many sources.

The formal structure of the model is as follows. Let there be a sequence of agents

i = 1, 2, 3, ... each deciding whether to see a movie j or not to see any movie at all [see

Figure 4].  There are m movies to choose from, i.e. j = 1, 2, 3,..., m.  Agent i+1 observes

the action of agent i before her.  If agent i chose movie j, agent i+1 will ask her about its

quality.   If agent i tells agent i+1 that the movie is good, then there is a probability π that

agent i+1 will see the movie.  We can interpret π as the confidence that agent i+1 attaches

to agent i's evaluation of movie j.   A low π implies that agent i+1 might not have

confidence in agent i's evaluation.  If this happens, there is a greater chance that agent i+1

will flip a fair coin to decide either to see one of the m movies or not to see a movie at all.
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If agent i+1 decides on the former, she will choose a movie from a list movies with the

top n market shares  (n < m and n takes values 5, 10 and 20).

Note that the number of movies with the top market shares changes over time. If,

at the initial stage, all movies have similar market shares, the number of movies with

market shares greater than or equal to the top n market shares may be large (greater than

n).  However, if the distribution of agents becomes more uneven over time, the number of

movies with market shares greater than or equal to the top n market shares will shrink

toward n.  The decision process for a bad movie is modeled similarly (see Figure 4).  If

agent i did not see a movie, agent i+1 flips a fair coin to decide either to see a movie or

not to see any movie.  If she decides on the former, she will choose randomly one movie

from the top n movies.

The exchange of quality information between agent i and agent i+1 is local.

However, when agent i+1 chooses to see a movie based on its market share she uses

aggregate information.  If agent i+1 lacks her neighbor’s evaluation of a movie or has no

confidence in her neighbor’s evaluation, she resorts to the market shares of the leading n

movies to help her decide which movie to see.

In the model, the global information may encompass the market shares of all

movies (when n = m) or a subset of market shares of all movies (when n < m).  The

important thing is that aggregate information evolves with the choices of agents.  If

agents are evenly distributed across movies, aggregate information is diffuse and

uninformative.  In contrast, if agents are unevenly distributed over movies, the top n

movies readily can be identified.
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4.1. Accuracy of Signals and Informational Cascades

As in the simulations for the previous model, 2,000 agents are sequentially

allocated to 20 movies.  Each movie is allocated one agent at the beginning.  To begin the

simulation, the first of the 2,000 agents is allocated randomly to one of the 20 movies.

In situations where agents do not rely on a neighbor’s evaluation, they choose a movie

among those in the top-five (n = 5).   We carry out twenty simulation runs for each value

of π from 0.5 to 0.9 with an increment of 0.05.   Half the movies are good and half are

bad.  The mean number of correct choices made by the agents for each value of π is given

in Table 3.

The mean proportion of correct choices declines as the confidence level π

declines; in fact, the proportion of correct choices is nearly identical to the accuracy of

the signal. The proportion of correct choices is higher when quality information is

available---the proportion of correct choices without quality information was only about

70% of signal accuracy, whereas it is about 100% of signal accuracy with quality

information. The transmission of information about quality increases the proportion of

correct choices that are made.

Do informational cascades occur more often in this model with quality and

quantity information than they do in the model with only quantity information?  Figures 5

(a) and (b) are two examples from many simulations that illustrate a general conclusion.

Information cascades occur only when π is high.  They are, however, very brief and more

than one movie has a cascade.  This, in part, puts to rest the concern that, in the absence

of reliable quality information, movie audiences will look to box office numbers to

choose movies.  Low accuracy in quality evaluation does not lead to herding on the box
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office numbers.  What low accuracy seems to do is to keep people from going to the

movies in the first place.  The ability to choose “none of the above” is a powerful

constraint on audiences flocking to the box office leaders.  If quality information is

accurate and a movie is good, then the dynamics can look like flocking because as

audience size grows, more quality information is transmitted and market share grows.

The growth in market share reinforces the process but it cannot drive it.

4.2. Information Cascades and Heavy Tails

Now we investigate the effect of the confidence level on the shape of the

distribution by varying the value of π and estimating α.  Two thousand agents are

allocated to 200 movies. For each value of π, we run twenty simulations. The summary

statistics of our simulations are in Table 4.

The values of α generated by this quantity and quality signals model are lower

than those obtained with the quantity signal model.  Because all the α values are less than

1, both the first and second moments of the box office distribution may not exist.  An

interesting result is that the value of α first declines as π declines but later increases.  The

reversal in the relationship between α and π occurs around π = 0.7.  This suggests that

there may be a critical value of π at which the distribution of agents is maximally heavy-

tailed.  Clearly, these cascades produce choice distributions that are too heavy-tailed to fit

the movies.  In part, this is due to the assumption that half the movies are good and half

are bad.  When most the movies are good or bad, the values of α are closer to the

empirical value of 1.5.  We take this issue up below with fewer movies to look at the

dynamics more closely.
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But, there is another factor that seems to be driving the cascade---the confidence

that agents place in quality information is exogenously set and independent of the weight

of the evidence contained in the aggregate information.

4.3. The Endogenous Transition between Local and Global Interactions

In the quality and quantity-based model agent i+1 switches from local to

aggregate information when she has little confidence in agent i's evaluation of a movie or

when she cannot get information from agent i about any of the movies available.  In these

cases, she flips a coin to choose a movie with a large market share or no movie.

The switch from local to aggregate information is exogenously fixed by the

confidence level π. We extend that model to let the confidence that an agent attaches to

another’s assessment be endogenous.  We assume that the larger the market share of

movie j, the greater confidence we place on agent i's evaluation of it (because it is

confirmed by many other choices).  Then agent i+1 places confidence πij = movie j’s

market share in agent i’s quality assessment.  The same confidence is placed in all agents.

Thus, if movie j's market share is very small, agent i+1 might not have confidence in

agent i's evaluation of it. We also assume that agents have bounded capabilities and can

keep track only of the top 5 movie shares (this is about what is reported on the evening

news).

We do twenty simulations in which 2,000 agents are allocated to 200 movies and

obtain the mean value of the proportion of correct choices made using this model.  Table

5 summarizes our results for both the mean value of the proportion of correct choices (C)

and the tail index (α).
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The proportion of correct choices in this model with endogenous πij seems to be

low in comparison to the earlier models with π (confidence level) fixed or p (signal

accuracy) fixed.  In the twenty simulation runs, none of the correct choices exceeded 58

percent.  Similarly, the distribution is more heavy-tailed than in the previous models.

We plot C against α in Figure 6.  The tail index α does not appear to be correlated

to the proportion of correct choices made.    In other words, by making πij endogenous,

the system converges to a narrow range of values for α which are not related to the

proportion of correct choices made.  This is a model of extreme cascades because, even

though quality information can be communicated, it carries weight only when market

share is high.  The process spends too much time making random choices until market

shares begin to differentiate, if they do.  If the shares do become differentiated enough for

a top 5 to emerge, a good movie in that group quickly captures a commanding lead

because the quality evaluations reinforce the market share signal.  By adding a weight

that is non-linear in a movie’s market share to the confidence that an agent attaches to

another’s quality assessment, we obtain a dynamic that strongly selects good movies.

But, it drifts so long at low resolution that it makes a low percentage of correct choices.

We run a series of simulations with different top-n market shares (n = 5, 10, 15,

and 20).  Table 6 and 7 summarize our results.   We observe that there is no discernible

relationship between n and C (Table 6).  There is a slight increase in α (reflecting less tail

weight) as n increases.
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5.  A Closer Look at Dynamics and Initial Conditions

Several restrictive assumptions underlie the models we have studied so far.  First,

we assumed that agents were uniformly distributed among movies to begin the

simulations.  This is in sharp contrast with the actual situation in the movies, where the

distribution of theater screens and opening week revenue is highly uneven.  Second, we

assumed that quality (good and bad) was evenly distributed among movies.  These

assumptions may be too restrictive if we are interested in modeling the observed

dynamics and distributions of box office revenues in the motion picture industry.  In this

section, we briefly explore the importance of these assumptions and how changing them

affect the results of the information cascade.

In analyzing these issues, we employ the quantity and quality model with

endogenous transition between local and global interactions.  The global information is

the market shares of all movies.   For simplicity, we simulate this model with 1,000

agents and 5 movies.  With only 5 movies we cannot estimate the stability index, but we

can observe the dynamics in more detail.  The simulations then are tournaments between

good and bad movies in which we vary the number of good versus bad.  First, we assume

all movies are bad.  Do we still get cascades?

We seed the movies with opening market shares that are shown in the figures.

Figures 7 and 8 show two different dynamics from the same initial conditions.  None of

the movies achieve a very high market share and there are evident crossing points where

one movie overtakes another.  The dynamics do settle down and the final distribution of

audiences is quite uneven, and unrelated to the initial conditions.  Of course, there is no
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room for quality information to distinguish among movies since they are all bad.  Most

people end up not going to a movie in this case.

In contrast, if we assume that all movies are good then we begin to see cases

where a movie captures a substantial market share.  Figures 9 and 10 summarize two

extreme examples where we assume that all movies are good.  In Figure 9, the first movie

begins with an initial market share of 50 percent but ends with a final market share of

only 0.1 percent!  However, a movie that began with a large initial market share can

increase its share further as shown in Figure 10.  What these simulations show is that

extreme inequality in the distribution of agents can only occur when we have good

movies.  In this case, word-of-mouth quality information does not distinguish among

movies, but market shares are reinforced by positive evaluations and become highly

credible signals of quality.  Interestingly, now information cascades do occur and are

readily detected.  This suggests that cascades are more likely when they are based on

correct information.  This point is driven home in a series of additional simulations of bad

and good movies.

Figures 11, 12, 13 and 14 summarize what happens when we have a mixture of

good and bad movies.  Figure 11 shows that a bad movie with large initial market share

may gain the highest market share, but generally will not.  Its market share will never be

very large (typically well less than 50 percent and never higher than 60 percent).

Similarly, a good movie with small initial market share may (Figure 13) or may not

(Figure 14) gain the market.   However, a good movie’s market share can be very

substantial (close to 99 percent as in Figure 13).



25

Figure 11 illustrates the “Godzilla” effect wherein a bad movie with a large

opening share of theater screens gains a substantial share, but one that is well below its

share at the opening.   Figure 12 illustrates the “Full Monty” effect wherein a good movie

with a tiny opening gains a large following.  Figure 13 illustrates the “Titanic” effect

wherein a good movie with a large opening share gains a large market share and kills the

other movies playing against it.  Figure 14 tests your faith in people, just as the movies

always seem to do, for it depicts a good movie opening big and playing against only bad

movies that, nonetheless, goes on to mediocre results.  Nearly every producer can name a

movie like this in her/his portfolio with high promise that died for inexplicable reasons.

Our answer is, “It’s the dynamics, stupid.”  The individual characteristics of a movie are

not sufficient to determine how it will fare in the complex dynamics of the motion picture

market.  Not a very satisfying answer for a movie executive to hear, but one that is closer

to the truth than any other answer that can be given.

How did a bad movie with only 2% of the opening go on to gain 58% of the

market against a good movie that opened with 50%?  It happens; that’s the movies.  In

this simulation there is an early period of extreme variation of market shares that weakens

the credibility of quality signals.  That was enough to start an up cascade in the bad

movie and a down cascade in the good one.  Once a bad movie gets a large share, the

share of good movies are too small a share for word-of-mouth evaluations to be credible.

So, even poor quality evaluations are not sufficient to overcome the power of the signal

contained in its market share.  A bad movie can gain a large market share from purely

random circumstances.  But, it is unlikely to become a monster hit like a good movie can.
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How true to life are these sorts of complex dynamics?  Very true, it turns out.  To

give a sense of how variable this market is in Figure 15 we plot the data.  The figure

shows the evolution of market shares for 115 films on Variety's top-50 list over a period

of 55 weeks (from 24 May 1996 to 12 June 1997).  The figure looks like a mountain

range; there is a lot of low-level variation in the foothills topped with a few intermittent

peaks.  In fact, like a mountain range, it is a fractal and the height variations are a power

law, often taken to be a signature self-organized behavior.  Where are the cascades in

these figures?  There are none; only one movie gets 40 % of the market and most movies

get far less than that.  The extreme volatility one sees in these data is the antithesis of the

monotonous sequence of choices that would represent the work of an information

cascade.

Our model shows that a dynamical interaction among many, boundedly rational

agents exchanging quality and quantity information leads to extremely complex behavior

in the aggregate.  In the real world of the movies, there is a further complication---new

movies are released each week throughout the year.   The information cascades are

perturbed every week by new movies. Even the complicated and variable dynamics of

our simulated information cascades may not be complex enough to capture the

unpredictability that is the hallmark of the motion picture industry.

6.  Conclusion

Information cascades are far more complex objects than standard models suggest

them to be.  Their dynamics are richly varied and intermittent and they can go almost
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anywhere.  Cascades do not occur at the high frequency predicted by the models and they

do not converge as rapidly or as narrowly as the models suggest.

Cascades may coexist in a “intermittent equilibrium” in which they burst to the

lead and then give way to a rival and then return to the lead again.  Because they are

intertwined and do not persist, cascades may be impossible to identify empirically.  And,

it is impossible to predict the dynamic path or final outcome of a competition among

cascades because their basins of attraction are the stable distributions with an infinite

variance and, possibly, an infinite mean.  It is because information cascade models are

able to generate stable distributions of outcomes that that they give a reasonable account

of the dynamics and frequency distribution of motion picture revenues.  But, when the

dynamics of box office revenue leads to a stable Pareto-Lévy distribution with infinite

variance, anything can happen.  Or, as screenwriter William Goldman famously said

about the movies, “No body knows anything.”
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Table 1

Mean values of the proportion of correct choices (C) as

a function of signal accuracy (p)

Accuracy of Private Signal (p) C

0.95 0.64

0.90 0.49

0.85 0.45

0.80 0.61

0.75 0.47

0.70 0.44

0.65 0.49

0.60 0.50

0.55 0.53

0.50 0.49
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   Table 2

   Summary statistics of tail index α from simulations

p Min α Max α Mean α S.D. α Median α

0.5 1.02 3.60 2.23 0.65 2.11

0.6 0.86 3.56 2.21 0.73 2.30

0.7 0.27 2.60 1.66 0.63 1.67

0.8 0.31 2.13 1.34 0.43 1.36

0.9 0.14 1.20 0.56 0.29 0.51
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Table 3

The proportion of correct choices (C) under different confidence levels

Confidence Level (π) Mean C

0.95 0.95

0.90 0.86

0.85 0.85

0.80 0.82

0.75 0.77

0.70 0.74

0.65 0.66

0.60 0.64

0.55 0.63

0.50 0.58

 Note: Global information involves top-5 market shares
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         Table 4

        Summary statistics of tail index α from simulations

π Min α Max α Mean α S.D. α Median α

0.5 0.343 2.195 0.691 0.449 0.493

0.6 0.014 1.297 0.577 0.272 0.556

0.7 0.002 1.114 0.562 0.278 0.491

0.8 0.019 1.655 0.647 0.365 0.527

0.9 0.321 2.139 0.735 0.427 0.578
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        Table 5

        Summary statistics of the proportion of correct choices (C) and the tail index α

Min Max Mean S.D. Median

C 0.05 0.58 0.32 0.16 0.27

α 0.11 1.16 0.45 0.22 0.37
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       Table 6

       Summary statistics for the proportion of correct choices (C) under
       different top-n market shares

n Min C Max C Mean C S.D. Median C

5 0.05 0.58 0.32 0.16 0.27

10 0.07 0.49 0.29 0.11 0.30

15 0.08 0.43 0.29 0.10 0.28

20 0.16 0.38 0.26 0.06 0.27
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       Table 7

       Summary statistics for the tail index α under different top-n market shares

n Min α Max α Mean α S.D. Median α

5 0.11 1.16 0.45 0.22 0.37

10 0.04 0.89 0.40 0.18 0.37

15 0.06 0.90 0.48 0.18 0.49

20 0.14 1.47 0.78 0.36 0.86
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          See movie j

                                               Prob[Xi+1 = High] = p

                                            Do not see movie

        q = 0.5

                    1 - p

          Choose one movie

                              based on market shares

                          (1 - q) = 0.5

                   Saw Movie j

Did not see any movie

        Choose one movie

         based on market shares

                                             q = 0.5

 

      1 - p   

                           Do not see movie

        (1 - q) = 0.5

Agent i+1Agent i
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               Prob[Xi+1 = Low] = p

         Do not see movie

Figure 2.  A simple BHW model
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when p = 0.55                                                (b) when p = 0.95

(a) (b)

(a) Low accuracy (b) High accuracy

Figure 3. Informational cascades among 20 movies
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See movie j
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Choose one movie
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                                                                                                market shares

(1 - q) = 0.5

Seen Movie j
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quality = Bad market shares

         1 - π                   q = 0.5
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                               π

Do not see movie

Choose one movie from
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list of top-n market shares

q = 0.5

Did not see

a movie

Do not see a movie

(1 - q) = 0.5

Figure 4. The quantity- and quality-based model

Agent i+1
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                    (a) π = 0.55                                                            (b) π = 0.95

Figure 5.  Quantity and quality information cascades.
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Figure 6. Proportion of correct choices (C) vs. tail index (α).
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Figure 7. Distribution of agents when all five movies are bad
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Figure 8. Distribution of agents when all five movies are bad
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Figure 9. Distribution of agents when all five movies are good
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Figure 10. Distribution of agents when all five movies are good
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Figure 11. Distribution of agents when one movie is bad, the rest are good
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Figure 12. Distribution of agents when one movie is bad, the rest are good
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Figure 13. Distribution of agents when one movie is good, the rest are bad
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Figure 14. Distribution of agents when one movie is good, the rest are bad
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Figure 15.  Market Shares of 115 films on the Variety's top-50 list

over 55 weeks  (24 May 1996 to 12 June 1997)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55

Week

M
ar

ke
t 

S
h

ar
e


